31auto calc_stat(
const std::vector<std::vector<clock::Duration>>& durations,
33 if (durations.empty() || durations.at(0).empty()) {
34 throw std::invalid_argument(
"No duration sample for statistics.");
37 std::vector<double> unsorted_samples;
38 unsorted_samples.reserve(durations.size() * durations.at(0).size());
39 const double inv_iterations = 1.0 /
static_cast<double>(iterations);
40 for (
const auto& durations_per_thread : durations) {
41 for (
const auto& duration : durations_per_thread) {
42 unsorted_samples.push_back(duration.seconds() * inv_iterations);
46 std::vector<double> sorted_samples = unsorted_samples;
47 std::sort(sorted_samples.begin(), sorted_samples.end());
49 Eigen::VectorXd vector;
50 vector = Eigen::Map<Eigen::VectorXd>(unsorted_samples.data(),
51 static_cast<Eigen::Index
>(unsorted_samples.size()));
53 const double mean = vector.mean();
55 const double max = vector.maxCoeff();
56 const double min = vector.minCoeff();
58 double median = sorted_samples.at(sorted_samples.size() / 2);
59 if (sorted_samples.size() % 2 == 0) {
60 median += sorted_samples.at(sorted_samples.size() / 2 - 1);
64 double variance = 0.0;
65 if (sorted_samples.size() >= 2) {
66 variance = (vector.array() -
mean).square().sum() /
67 static_cast<double>(sorted_samples.size() - 1);
69 const double standard_variance = std::sqrt(variance);
70 const double standard_error =
71 std::sqrt(variance /
static_cast<double>(sorted_samples.size()));
73 return Statistics(std::move(unsorted_samples), std::move(sorted_samples),
74 mean, max, min, median, variance, standard_variance, standard_error);
77auto calc_stat(
const std::vector<std::vector<double>>& values)
79 if (values.empty() || values.at(0).empty()) {
80 throw std::invalid_argument(
"No sample value for statistics.");
83 std::vector<double> unsorted_samples;
84 unsorted_samples.reserve(values.size() * values.at(0).size());
85 for (
const auto& values_per_thread : values) {
86 for (
double value : values_per_thread) {
87 unsorted_samples.push_back(value);
91 std::vector<double> sorted_samples = unsorted_samples;
92 std::sort(sorted_samples.begin(), sorted_samples.end());
94 Eigen::VectorXd vector;
95 vector = Eigen::Map<Eigen::VectorXd>(unsorted_samples.data(),
96 static_cast<Eigen::Index
>(unsorted_samples.size()));
98 const double mean = vector.mean();
100 const double max = vector.maxCoeff();
101 const double min = vector.minCoeff();
103 double median = sorted_samples.at(sorted_samples.size() / 2);
104 if (sorted_samples.size() % 2 == 0) {
105 median += sorted_samples.at(sorted_samples.size() / 2 - 1);
109 double variance = 0.0;
110 if (sorted_samples.size() >= 2) {
111 variance = (vector.array() -
mean).square().sum() /
112 static_cast<double>(sorted_samples.size() - 1);
114 const double standard_variance = std::sqrt(variance);
115 const double standard_error =
116 std::sqrt(variance /
static_cast<double>(sorted_samples.size()));
118 return Statistics(std::move(unsorted_samples), std::move(sorted_samples),
119 mean, max, min, median, variance, standard_variance, standard_error);