cpp-stat-bench 0.24.0
Benchmark library with statistics for C++.
Loading...
Searching...
No Matches
calc_stat.cpp
Go to the documentation of this file.
1/*
2 * Copyright 2021 MusicScience37 (Kenta Kabashima)
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
21
22#include <Eigen/Core>
23#include <algorithm>
24#include <cmath>
25#include <stdexcept>
26#include <utility>
27
28namespace stat_bench {
29namespace stat {
30
31auto calc_stat(const std::vector<std::vector<clock::Duration>>& durations,
32 std::size_t iterations) -> stat::Statistics {
33 if (durations.empty() || durations.at(0).empty()) {
34 throw std::invalid_argument("No duration sample for statistics.");
35 }
36
37 std::vector<double> unsorted_samples;
38 unsorted_samples.reserve(durations.size() * durations.at(0).size());
39 const double inv_iterations = 1.0 / static_cast<double>(iterations);
40 for (const auto& durations_per_thread : durations) {
41 for (const auto& duration : durations_per_thread) {
42 unsorted_samples.push_back(duration.seconds() * inv_iterations);
43 }
44 }
45
46 std::vector<double> sorted_samples = unsorted_samples;
47 std::sort(sorted_samples.begin(), sorted_samples.end());
48
49 Eigen::VectorXd vector;
50 vector = Eigen::Map<Eigen::VectorXd>(unsorted_samples.data(),
51 static_cast<Eigen::Index>(unsorted_samples.size()));
52
53 const double mean = vector.mean();
54
55 const double max = vector.maxCoeff();
56 const double min = vector.minCoeff();
57
58 double median = sorted_samples.at(sorted_samples.size() / 2);
59 if (sorted_samples.size() % 2 == 0) {
60 median += sorted_samples.at(sorted_samples.size() / 2 - 1);
61 median *= 0.5; // NOLINT(readability-magic-numbers)
62 }
63
64 double variance = 0.0;
65 if (sorted_samples.size() >= 2) {
66 variance = (vector.array() - mean).square().sum() /
67 static_cast<double>(sorted_samples.size() - 1);
68 }
69 const double standard_variance = std::sqrt(variance);
70 const double standard_error =
71 std::sqrt(variance / static_cast<double>(sorted_samples.size()));
72
73 return Statistics(std::move(unsorted_samples), std::move(sorted_samples),
74 mean, max, min, median, variance, standard_variance, standard_error);
75}
76
77auto calc_stat(const std::vector<std::vector<double>>& values)
79 if (values.empty() || values.at(0).empty()) {
80 throw std::invalid_argument("No sample value for statistics.");
81 }
82
83 std::vector<double> unsorted_samples;
84 unsorted_samples.reserve(values.size() * values.at(0).size());
85 for (const auto& values_per_thread : values) {
86 for (double value : values_per_thread) {
87 unsorted_samples.push_back(value);
88 }
89 }
90
91 std::vector<double> sorted_samples = unsorted_samples;
92 std::sort(sorted_samples.begin(), sorted_samples.end());
93
94 Eigen::VectorXd vector;
95 vector = Eigen::Map<Eigen::VectorXd>(unsorted_samples.data(),
96 static_cast<Eigen::Index>(unsorted_samples.size()));
97
98 const double mean = vector.mean();
99
100 const double max = vector.maxCoeff();
101 const double min = vector.minCoeff();
102
103 double median = sorted_samples.at(sorted_samples.size() / 2);
104 if (sorted_samples.size() % 2 == 0) {
105 median += sorted_samples.at(sorted_samples.size() / 2 - 1);
106 median *= 0.5; // NOLINT(readability-magic-numbers)
107 }
108
109 double variance = 0.0;
110 if (sorted_samples.size() >= 2) {
111 variance = (vector.array() - mean).square().sum() /
112 static_cast<double>(sorted_samples.size() - 1);
113 }
114 const double standard_variance = std::sqrt(variance);
115 const double standard_error =
116 std::sqrt(variance / static_cast<double>(sorted_samples.size()));
117
118 return Statistics(std::move(unsorted_samples), std::move(sorted_samples),
119 mean, max, min, median, variance, standard_variance, standard_error);
120}
121
122} // namespace stat
123} // namespace stat_bench
Declaration of calc_stat function.
Class to calculate statistics.
Definition statistics.h:31
Namespace of statistics.
Definition calc_stat.h:29
auto calc_stat(const std::vector< std::vector< clock::Duration > > &durations, std::size_t iterations) -> stat::Statistics
Calculate statistics.
Definition calc_stat.cpp:31
Namespace of stat_bench source codes.